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Entropy production per site in a (nonreversible) spin-flip process is studied. 
We give it a useful expression, from which a property stronger than affinity 
of the entropy production per site follows. Furthermore, quasi-invariance of 
nonequilibrium measures in the spin-flip processes is discussed via entropy 
production. 
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1. I N T R O D U C T I O N  

In 1971 Holley ~71 proved a version of  the well-known H- theorem of 
Boltzmann for infinite spin systems called stochastic Ising models, which 
are spin-flip processes with reversible Gibbs measures. After this result, 
similar ones were obtained for various stochastic reversible systems by 
many authorsJ  6"9'41 C o m m o n  features a m o n g  them are the following. The 
system under  considerat ion is reversible with respect to Gibbs measures for 
some potential. The specific free energy associated with the potential 
defines the H-function. That  is, letting F(. ) be the specific free energy func- 
tional and/L, be the distribution of  the process at time t, one can show that  
F(/t,) is nonincreasing in t. 

This kind of  result was extended by Kfinsch c8~ to nonreversible 
systems with s tat ionary measures having certain regularity properties. As 
will be seen later, all the results also can be restated as nonposit ivity of  the 
time derivative of  the relative ent ropy with respect to the stat ionary 
measure. The q u a n t i t y  which we call entropy product ion  is the one 
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obtained from the derivative by changing only its sign. The main purpose 
of this paper is to find an identification for the thermodynamic limit of the 
entropy production. It will turn out that the functional obtained as the 
limit measures, in some sense, how the state is far from (or close to) equi- 
librium of the system. 

We discuss a spin system on Z d, the d-dimensional integer lattice. Set 
E =  { - 1 ,  1 } z,I, whose elements are denoted by J7 = (P/h; k e Zd). We will use 
the notations E A = { - - I ,  1} j~ and ~,~A=cr(qk; k e A )  f o r ' A c Z  d. The 
spin-flip process we consider is the Markov process on E with the (pre-) 
generator of the form 

s ~ C(ZkPl) V~f(~), Vkf(t l)=f(ykq)--f(q) (1.1) 
k E Z d 

where rk is the shift by k, i.e., ( rkq) i=n, .+ , ,  and Ykq denotes the configura- 
tion whose spins coincide with q except at k, at which site the spin is - q h .  
The function c o Zk is simply denoted by ck. We assume that the jump rate 
c is a strictly positive continuous function such that 

( , z, " - '  

Our argument will be crucially based on the existence of a stationary 
measure with the following properties due to Kiinsch) 81 Let v be a station- 
ary measure of the process associated with ~o. Throughout  this paper, we 
suppoe that its local conditional distributions defined as 

pk(q) = v(co k = qk [ ~kt,)(17) (1.3) 

are strictly positive continuous functions such that pk(q)=po(rkq) (shift 
invariance) and 

IlVkP~ ~,~ < c~ (1.4) 
, 

Under these conditions it is shown in ref. 8 that p ,  are actually determined 
by the equation 

)-' Vo(ck-- ~k) = 0 with ~k(ll)=ck(ykq)p*(y, rl)/pk(rl) (1.5) 
k 

We shall use the notation E instead of E0 so that Oh = ~.~ rk. It should be 
noted that the stationary measure v is trivially a Gibbs measure for the 
local specification { p v} given by 

p w(17) = v(r k =llk, Vk e W [ ~v,)(q) (1.6) 
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where V are finite sets in Z d. Each p v is also a strictly positive continuous 
function on E. See ref. 10 for a detailed account of the local specifications 
and of the associated Gibbs measures. 

We now define two functionals of probability measures on E, relative 
entropy and entropy production. For two given probability measures p and 
2 on a measurable space, the relative entropy of/~ with respect to 2 is 
defined by 

{~o'[log(dlL/d2)] if II,~2 
h(r 2) = otherwise (1.7) 

where E~'[ �9 ] denotes the expectation with respect to / t .  Let JC(E) be the 
totality of Borel probability measures on E and set 

JCo(E) = {It e ,,/C(E); ll is shift invariant} 

Here it E J/C(E) is said to be shift invariant if lt = i t  o r~ -l for all k ~ Z a. Set 

h,,(l,, v):--h(l , l~,  vl~,)=E"[logdl'l 1 (1.8) 
" '  " dv I 

for It ~ JI(E) and A c Z '1, where dlt/dvl.~, denotes the density ofltl.~., with 
respect to v]~,. In the case when pk are of the Gibbsian form 

Pk(Tkrl)/pk(rl)=exp ( 2 wk  ~ Jv ~1q ,)  (1.9) 

with a shift invariant potential {Jr} satisfying Z w o  IJvl < o  e, the free 
energy F,l(lt) (discussed in ref. 7) in A is shown to be related to hA( ~, v) in 
the following fashion: 

F,,(lt)=hA(lt, v)--PA+o(IA I ) as A ] 'Z  a (1.10) 

where PA are constants for which lim IAI -~ P,~ (called the pressure of the 
potential {J r})  exists. In (1.10) and in what follows, A T Za means that A 
runs over hypercubes with center 0 and IAI denotes the cardinality of A. 
The relation i l.10) implies that, up to the smaller order term in the 
volume, the 'time derivative' of the free energy coincides with that of the 
relative entropy. The meaning of 'time derivative' is made clear in the next 
definition of entropy production. Given I t  ~ .//C(E) and bounded A c Z a, we 
define entropy production in A by 

a,,(ll) := -~h,~(l~,, v ) l , = o = E "  (--Xa)log dp (1.11) 
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where it, is the distribution of the process at time t with the initial measure 
It. See Lemma 2.2 below for a detailed account and for the proof  of the last 
equality, where the convention 0 log 0 = 0 is implicitly used. 

By setting 

a(it) = lim inf, l ,  aA(it) (1.12) 
ATZa IAI 

some of the main results obtained by Kfinsch, ~81 which are extensions of 
Holley's, ~71 are described as follows. 

The o re m/8~  If the local conditional distributions of the Gibbsian 
form (1.9) satisfy Eq. (1.5) and bZk I[Vk~][~ < oo, then: 

1. a(it) is nonnegative for all it e Jg(E). 

2. For  p e ,//go(E), liminf in (1.12) can be actually replaced by lim. 

3. On Jgo(E), a(it) is lower semicontinuous in it, and takes value 0 
if and only if It is a Gibbs measure for {Jw}. 

We note that the Gibbsian specification (1.9) satisfies both (1.4) and 
Y~k IlVk~ll ~ < ~ if Zv~0 IV[. [Jr[ < c~. 

In the rest of this paper we are only concerned with measures it in 
J/go(E). We will show the existence of lim [AI -I  a A ( i t ) = : a ( i  t )  without 
Gibbsian form of the local conditional distributions. Further, the main pur- 
pose of this paper is to study a(-)  as a functional on J/go(E), and in this 
situation we call a(it) the entropy production per site of It associated with 
the spin-flip process. We now state our main result. 

Theorem 1. Let It be in ~//go(E). Then lim IA1-1 a,,(it)--: a(it) exists 
and 

a(it) = E;'[ c] h(it", It~ .~ ),o ~ ) (1.13) 

where It~ ~ J/g(E) ( ~ = c  or 2) is given by dit~=E~'[~] - '  ~dit. In addition, 
if a(it) < ~ ,  then 

1 I dit" J 1 (1.14) [A[ (--Aa) log ~P v ~E; '  c(.)lOgditeoyol 

in Ll(it) as A 1" Zd, where J denotes the shift-invariant a-field on E. 

The convergence (1.14) can be regarded as the one behind the exist- 
ence of the thermodynamic limit of IAI -~ aA(it). We should note that a 
similar quantity to the right-hand side of (1.13) appeared in ref. 12 for a 
general reversible process, but was not identified with the associated 
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entropy production per site. Our identity (1.13) is useful for deriving 
properties of a(-)  itself. For  example, it gives the following, which 
immediately implies that a is affine on Jgo(E). 

Coro l l a ry  2. Let 3- denote the tail a-field on E and J be as in 
Theorem 1. Then there exists a ~ c~ J-measurable  function a*: E ~  [0, ov ] 
such that 

a( l t )=E~ ' [a  * ] forall  l t e J / o ( E )  (1.15) 

Proofs of Theorem 1 and Corollary 2 are given in Section 2. 
Next we state a quasi-invariance result obtained as another corollary 

to Theorem 1. To do this, let us introduce the notion of quasi-invariance. 
Given A c Z a, consider the mapping YA on E defined by 

( ~ A  q ) i  = �9 if i ~ A  (1.16) 
if i C A  

This is called the modification in A. Let F denote the family of finite 
modifications; F =  {Lt; IAI < ~},  or equivalently F is the group of map- 
pings generated by {Yi; i~  za} .  We say that It ~ J / ( E )  is F-quasi-invariant 
if p and It o T -  J are equivalent for all y ~ F. It is easy to see that any Gibbs 
measure for an arbitrary absolutely summable potential is F-quasi- 
invariant. The next result concerns this property in the nonequilibrium 
situation. 

Coro l l a ry  3. Suppose that the initial measure l l  of the spin-flip 
process is shift invariant and let lt, be the distribution of the process at 
time t. Then: 

(i) For  a.a. t > 0, p, is F-quasi-invariant. 

(ii) For  all t > 0, the time-averaged measure t-~ ~'o P.,. ds is F-quasi- 
invariant. 

We shall prove this and discuss F-quasi-invariance in more detail in 
Section3. Note that in view of the results of Sullivan, 1~21 the quasi- 
invariance property of nonequilibrium measures like Corollary 3 could be 
seen for more general infinite systems. The associated quasi-invariance 
there would be determined by the dynamics. For  instance, consider so- 
called stochastic lattice gases. These are particle systems in E'  := { 0, 1 } zd 
with conservation law for the 'particle number.' Under suitable assump- 
tions, the quasi-invariance in this context is described in terms of the 
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family /7 of mappings on E' generated by {re0; i, jezd} ,  where r U is 
defined by 

~ l?j if k = i 

( T t i j q )  k = ~ l ~ i  if k = j  
( 11~, if k r  

In the reversible case, this assertion can be proved by similar arguments to 
those given in the following sections for our spin-flip process. Indeed, a ver- 
sion of Theorem 1 holds true as is stated in the following. Consider the 
Markov process in E' governed by the generator 

f#f('l)-- ~ c(ij, tl) Vof(,I), Vaf(,l) = f (n , j r / ) - f ( , l )  
u 

where tj stands for a two-point set {i,j} in Z d. Suppose that the family 
{c(tj, .)} ij satisfies the conditions (i)-(iii) of ref. 4, p. 78. We also suppose 
that c(0i, �9 } -= 0 except for finite number of i's, for which c(Oi, �9 ) are strictly 
positive continuous functions. If the process associated with f# is reversible 
with respect to a Gibbs measure for a shift-invariant potential {Jr} with 
Y.v,o [Jv[ < co, i.e., for each /j 'c Z d, 

c(ij, q)exp(-- ~" Jv I-I qk) 
I / c ~ i j ~ O  k e  V / 

:c(o',rto.q, exp ( - ~ Jv l-I (rri/I)k) (1.17) 
Vc~O'~I~  k e  V 

then the entropy production per site associated with this process exists for 
all # e Jgo(E') and is expressed as 

�89 Z E"[c(Oi, .)] h(t,'"~176 ) (1.18) 
i :c(Oi. .}>O 

The first half of the above assertion is essentially implied by Remark (3.41) 
of ref. 4. 

We finally remark that, without the reversibility (1.17), Spohn ~ J  
studied stationary measures of the process associated with ft. He used the 
entropy production method and obtained analogous results to Kfinsch's/8~ 

2. PROOF OF T H E O R E M  1 

In this section we shall give the proof of Theorem 1 after giving a 
series of lemmas. Throughout this section the following notations are used. 
Let k e Z d. The configuration ykll is simply denoted by r/k. The cylinder set 
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determined by q ~ E a or the restriction of t/E E on a A c Z d is written as 
[ q ] or [ t/] a,  respectively. Thus  

[q]={coeE;cok=qk,kEA} for IIEE A 

[~l]A={(o~E;cok=qk, k~A}  for r / e E  

Our  first task is to look for a uniform bound  of the local specifications pA. 

/ e m m a  2.1.  There exists a constant  C~ e (0, oo) such that  

e-C'l'ft<~ inf p~*0/) (2.1) 
qEE 

for all bounded A c Z d. 

Proof. Fix a bounded  A c Z d and an 1/e E. By the definition (1.6) of 
the local specification, for k e A and co e E 

pA(r pk(r 
pA( (ok ) --pk( (.ok) (2.2) 

Take an arbi t rary  ~o e [q]Ac. Then there exists {kl . . . . .  ku} c A with N~< IAI 
such that  q = Yk, . . . . . . .  ykxco. So 

pA(q) tr 
l o g ~  ~< ~ sup [logpk~(~)--logp~(~kJ)[ 

iJ ~eu) j = l  ~ s [,,'].l," 

N IlVo logp~ ~_ ~< IAI-IiVo logp~ ,~ 

This implies the inequality 

P:*('I) >1 PA(Co) exp( --IAI" IlVo log p~ ,~_ ) 

Summing up both  sides over roe [q]ac ,  we have 

21"lpA(, I) >~exp( - I A i .  I1% logp~ ~)  

This proves that  (2.1) is valid with C~ = log 2 + IIVo log poll <. | 

By Lemma 2.1, we see that  v ( [ r / ] ) >  0 for all 11~ EA and bounded  
A c Z  d. So, given lteJc'(E), the local density ~b A of/ t l .~ ,  with respect to 
v].~, is defined for all bounded A c Z a. We can regard it as not only a func- 
tion of  q e E, but  also a function of q e E A. In terms of this density, a more  
explicit expression for the ent ropy product ion  a A than (1.11) is given as 
follows. 
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Lemma 2.2. For a p �9 JC(E) and a bounded A c Z d, 

~  Z Z ~ ckdl~'{logr 
k E i l  q E E A  o e q ]  

= E " [ ( - s  log r (2.3) 

where the convention 0 log 0 = 0 is used, so that the right-hand side of (2.3) 
takes value oo if and only if both CA(q)>0 and r k) = 0  hold for some 
k e A  and r / s E  n . 

Proof. The proof  is essentially the same as that given in ref. 4, and 
involves standard calculations based on the forward equation of the pro- 
cess associated with ~9 ~ We omit it. | 

As in Theorem 1, we use the notation dll ~ : = E ' [ ~ ]  -~ ~d/~ (c~=c or 
~). Note that these two normalizing constants are equal if l~ is shift 
invariant. Indeed, we have the following result. 

L e m m a  2.3. I f p e . / ~ ( E ) ,  then E'[c] = E ' [ E ] .  

This lemma is a consequence of the relation (1.5). Although it has 
been essentially proved in ref. 8 (Theorem 4.1 ), we shall give the proof for 
the reader's convenience. 

Proof of Lemma 2.3. Let A c Z d be bounded and r / �9  E be fixed. Set 
~OA=~.kEA (Ck--Ok). Using the definition (1.5) of Ok and (2.2), one can 
easily show that 

so that 

~, qLl(co) pA((o)=O (2.4) 

inf ~0A(rO)~0~< sup rpA(ro) (2.5) 
~oe [ q ] j ,  ~oE [ q ] . l "  

Let co' and co"e [q ]  A, satisfy 

sup gOA(CO ) = 4 0 , 1 ( O J ' ) ,  
co e [Jt],J" 

inf (OA(O~)=4OA(CO") (2.6) 
co e  [q] , j , .  

respectively. Then 

sup 
oJ �9 [ q ] j , -  k e A  

< ~ ~ (HVkc, ll.~..+llVke, ll~.) 
k e A  l e a  
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Here, the first inequality and the third one follow from (2.5) and (1.5), 
respectively, and the rightmost side is of o(IAI) as A T Za by the assumption 
(1.2) and Zk IlVk211 ~ < oz, which is proved by showing 

IlVk211,~,_ "-- < IlVkcll ~ +2 Ilcll~ I Ip~ IlVkp~ ~. 

and then using (1.2) and (1.4). 
Now, use the shift invariance of/~ to show 

IAI • I E ' [ c ] - - g ' [ 2 ] l  

= Ig" [~0Aql  ~<sup I~0A(CO)--~0A(r + sup I~0A(r 
r  o~E [q ] . l c  

where ~o.q is defined as 

(co. r/)~ = ~o,- if i e A  
Uh if i~A" 

It remains to show that the first term in the rightmost side is also of o(IAI). 
But this is a consequence of the continuity of c - 2 .  In fact, it is easy to 
prove that for all continuous functions f on E 

sup ]fk(O2)-- fk(CO.tl) I =o([A]) 
k ~ / !  ~oEE  

a s A ' f Z  a, where f k = f o r k .  | 

The next lemma shows that the generalization of the Shannon- 
McMillan theorem can be applied to find the thermodynamic limit of the 
integrand in (1.11). Given A = Z  a and k e Z  a, let A - k =  { i - k ;  i e A } .  

L e m m a  2.4. Let It be in J/o(E) and A c Z a be bounded. Suppose 
that aa(It ) < 0'3. Then it-almost surely it holds that 

dl/" ~ , - k  (--&~ ~ C(rkq) lOgdl.t~.Oyo! (rkq)+R,!(q) (2.7) 
k e A 

with RA(~I) = o([A[) uniformly in q ~ E and It ~ Jgo(E) as A T Za 

Proof. For notational simplicity, set 

I ~t,,]. ~ t for ,z~E 

O~k, . t ( l l )  = (0~ = c or 2) 

(It,,lotkdl, for qeE,!  
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Fix an q e E such that P(D1]A)> 0. Observe from Lemma 2.3 that 

d/,• 
t" ~1 - k did o 7o I (rkrl) = Ck'A(I'])/Ck'A(IIk) (2.8) 

which is well defined for all k e A  by the assumption aA(p)< ~ and 
Lemma 2.2. Put 

d•c 
q"  d" '~ '7o ' 5,, 

when it is well defined for a V c Z  a. Using (2.8) and Ck(q)pk(q)= 
~k(qk)pk(qk), we obtain 

R,I(q) = (--Y~)log CA01)- ~ C(rkq)log ~bA_k(Zkq ) 
k E d  

tz(D/]A) 
= ~ c(rkq) log 

k e A r  A(ll ) 

C k ( q ) [ l ( [ ~ ] A  ) 
= Y' c(rkq) log 

,,..- ~ .,1 C k , , , ( r / )  

- log  v( [ q ] A ) pk(ilk) "~ 
v( [ rlk]A) pk(q) J 

1o / ~ ( [ r  v(D/]4! 
'~ ~k,A(llk-"'~) 11( [/~k] A)) 

G(r lL( [ r(" ] , ,  ) 

log ,~k.A(r/k) 

The following bounds are easy to show: 

log Ck(ll) fl([q]A) ~ sup I1og Ck(CO}-- log Ck(r/)] 
Ck,.4(q) o,e [q].l 

log C k( llk ) lt( [ Ifk ] /i ) ]l 
Ck. A( ll k ) I 

sup Ilog Ck( O) ) -- log ~k(tlk)l 
oJ e [ ,lk].a 

On the other hand, by (2.2), 

pk(q 
vIf,1],,) = I ,,(d,o) pA(,1 .co)= I v(d,o) p"(,/ ,  co) pk(qk.  CO) 

where q. a~ e E is given by 

(r/- co),. = f ~q; if i 6 A  
if i ~ A '  
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Hence one can get 

log v(Eq] ~1) PkOlk) 
v([qk]A)pk(q ) <~ sup [1ogpk(oJ)--logpk0/)[ 

c,~, ~ [,1 ] , j  

+ sup Ilogpk(co)--logpk(qk)l 
O J E  [qk].t 

The above three estimates and the continuity of log c and logp ~ together 
complete the proof of Lemma 2.4, since the following is true for an 
arbitrary continuous function f on E: 

sup{ IA-(~o)- fk( ,z) l ;  co, ,TEE, o~lA = ql,,} = o( IAI )  
kE.,I 

as A T Za, where f ,= f ,~rk .  | 

Denote by 5A(P) the p-expectation of the summation in the right-hand 
side of (2.7) if O'A(p)< ~ .  Otherwise set 5A(P)= CO. It is important to note 
that 5:1(P) essentially contributes to the existence of the thermodynamic 
limit of I A I - '  a,l(/t) as follows. 

Fix a/t~,/r ). Then A~--~6,~(p)~[O, co] is super- L e m m a  2 .5 .  
additive, namely 

5,,,(,u) + 5 ,,2(,u) ~< ,~,~, uA,(P) (2.9) 

holds for bounded A,, A,_cZ a such that A I ~ A 2 = ( ~ .  In particular, 
cr(p ) = lim IAI - ' ~r,j(/t) ~ [ 0, ~ ] exists and 

1 1 
a ( p ) =  lim - - S A ( p ) =  sup 5A(/z) (2.1o) 

Proof. From (2.7) and E~'[c] = E~'[O], it is not difficult to observe 
that for all bounded A c Z a, 

5A(p)=E~'[c] Y" h,,_,(p",/te,~7ol)>fO (2.11) 
k r  

This implies that 

ff,~.uA,-(It)=E~'[ c] Z h,,-k(P",P"'~'ol)+E"[ c] ~ hA-k(It",bte~ 1) 
kEAI kEA2 

i> E , ' [ c ]  Z ' " h " " hA,_k(p,p ~  ~ A2_~(p,ltc'~70 I) 
kE/ll  kEA2 

= 5,J , (P)  + #A_,(P) 
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whenever A ~ c~ A 2 = ~ .  With the help of Lemma 2.4, the second assertion is 
proved by standard argument. [ See, for instance, ref. 5, Lemma ( 15.11 ). ] II 

We now state a generalization of Perez's theorem given by Fritz (3) in 
a special form that is suitable for our purpose. 

kemma 2.6 (Perez, Fritz). Let l t ~ , # ~ ( E )  ( i=  1, 2) and let ~ '  be 
the family of bounded sets of Z a. If 

sup h v ( p l ,  P2) < oo (2.12) 
I /E . ~  

then lt ~ "~ l l  2 , 

and 

h ( p , , p 2 )  = sup h v ( / t l , p 2 )  (2.13) 
V ~  ,q/ 

d p ,  I , dp, 
o g - -  ~ l o g  in L)(pl)  as V---, Z a 

dp21~,, dp2 

in the sense that for each e > 0 there exists a V~ ~ .~' such that 

dpt - l o g  < e  whenever V= V~ E m log dp2 .~,. dp2 

As an application of this lemma we now prove Theorem 1. 

Proo f  o f  Theorem 1. Suppose that it ~ .#Co(E) is given. It is obvious 
by (2.11 ) that 

,L,(It) ~< IAI E " [ c ]  h(p",p~O),o ') 

and so by Lemma 2.5 

a(p)  <~ E~'[ c] h(lt", i~c..-~ yo  L ) (2.14) 

which implies that h(lt'" , / t"  ,~ Yo i ) = c~ whenever a(it ) = (x~. In the rest of the 
proof we assume that a(lt) < 0(3. We need to verify that the condition (2.12) 
holds with p . =  pc, it 2 = fie o ),o j. For each V E ~ ,  

h v ( p " , p " ~ 7 o l ) =  ~lim 1 ~ } hv(i.t,. ,/t, ,OTol ) 
(Arz ,/[A[ kEA:,'!--k= I / 1 

I 
~< lim, l ~ SUpz~ -~l  ~7~ h A - k (It ", p" '~ Yo 1 ) 

1 
= E~,[ c] - l  lira - - 6  A(p) = E/'[ C] -I  a(/t) 

,*rz~ IAI 
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and hence 

sup hv(l~",l~eOyoJ)<~E~'[c] -1 a(/x) < 
VE .~y' 

Combining this with (2.13) and (2.14), we obtain the first assertion of 
Theorem 1, 

a(I2 ) = EI'[ c ] h(gt", Ite o y o I ) 

Set, as in the proof of Lemma 2.4, 

_ _  did  ~,  _ d l l ' "  

~A d j , ~ y o  I ' and ~ dl teoTol  

Each of the logarithms of these functions is in Lt( i t  ") by a general 
inequality in ref. 1: 

f log dlltd~ 2 dltj <~h(ll~, lt2) + [2h(Itt,l~2)] ~/2 (2.15) 

which holds for arbitrary probability measures ~ti ( i=  1, 2) such that 
itj ,~it2 on a measurable space. Moreover, the above inequality together 
with h(id', ite o )% l) < co implies 

C2 :=max{ sup E ~'c [log ~A I, El'" [log ~ [ l  < CO 

A E ,~/ ) 

Now by Lemma 2.6, for each e > 0 we can find a V~ ~ d such that 

E ~ ' " l l o g ~ A - - l o g ~ [ < ~ e  for all A = V ~  

and hence it holds that 

1 
Z E "  I log~, , ,_k-- log~l  

IAI ~ , r  

2C~ 
~< e + ~ [{ k E A; A - k does not contain V~} I ~ e 

as A T zd. Consequently, 

lim 1 Z E "  ]log @,,_,~-log @l =0 
AtZ" IAI/,~,I 



568 Handa 

Combining this with the mean ergodic theorem, we have 

1 
Z C(TklI) log  I//A_k(Tkr/) ~ E~'[c log ~b [ J ]  

IAI k~,, 

in LI(#) as A TZ a, where J is the shift-invariant a-field. Therefore the 
proof of the second assertion of Theorem 1 is completed by Lemma 2.4. II 

Proof or Corollary 2. Denote by o ~ the Borel a-field of E. Let ~-- be 
the tail a-field on E. It is known [see Theorem (14.10) in ref. 5] that we 
can construct a version 2 ~' of the conditional distribution given J satisfying 
the following: 

1. For  all e) e E, 2~ ) e Jgo(E) 

2. For all A e o~, co v--, 2~ is J ~ Y--measurable. 

3. For all/z e Jlo(E) and A e 

2"~(A) =/~(A [ J) ( (o)  l~-a.a, co 

Define a*: E ~  [0, 0o] by a*(co)=a(2"). It follows from (2.10) and 
condition 2 of the above proof that a* is .~r n Y--measurable. The required 
identity a(kt)=EJ'[a *] is now proved by an almost similar argument to 
that in the proof of Theorem (15.20) in ref. 5. | 

3. QUASI - INVARIANCE OF NONEQUIL IBRIUM MEASURES 

F-quasi-invariance introduced in Section 1 comes from the dynamics 
of the spin-flip process. This property, however also has been discussed in 
equilibrium statistical mechanics~t~ a Gibbs measure i t~J / (E)  for the 
local specification {pV} is characterized as a F-quasi-invariant measure 
such that 

d(,//o ~k  1 ) pk(~kI1) 
(11)= for all k ~ Z  d (3.1) d, tt pk( /1) 

Before proving Corollary 3 stated in the Introduction, we give some condi- 
tions equivalent to F-quasi-invariance. 

I . e m m a  3.1. For given/~ e J / (E) ,  the following three conditions are 
equivalent. 

(i) p is F-quasi-invariant. 

(ii) p and/tO),k I are equivalent for all k e Z  d. 
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(iii) For all bounded A c Z a and all i /e EA, 

/2([r/] I ~A~) > 0  /2-a.s. (3.2) 

Proof. Since every finite modification is represented as a composition 
of a finite number of one-point modifications, the proof of equivalence 
among above three conditions is elementary and omitted. | 

The essential idea of the proof of Corollary 3 is that any shift-invariant 
measure with finite entropy production per site is F-quasi-invariant. 
Indeed, take /2eJlo(E) and suppose that a(lt)<oo. Then, by (1.13), 
/2 ~/2 '~ Yo ~, which also implies/2 o 70 ~ '~/2. So/2 and/2 o )Po i are equivalent, 
and the condition (ii) of Lemma 3.1 is verified by shift invariance of//. 

Proof of Corollary 3. Fix a/2 e J/0(E) and denote by/2, the distribu- 
tion of the spin-flip process at time t with the initial measure/2. By a shift 
invariance of our dynamics [see (1.1)] /2, is easily shown to be shift 
invariant. The Markov property and the definition (1.11) of aA(" ) together 
yield 

d 
--c hA(/2,, v)= --~7 A(/2,) (3.3) 
If/t 

o r  

h~l(/2, v ) - -hx ( /2 t ,  v) = ox(/2s) ds (3.4) 

for all t > 0 and bounded A c Z d. Here it should be noted that aA(/2,) is 
finite for all t > 0 .  In fact, if we assume t h a t / 2 , ( [ r / I ) = 0  for some r /eEl , ,  
then 

d {~t ckd/2,--f[ c~d/2,} 0 =)S/2 , ( [ r / ] )  = Y. ,r"~ ,,l 
keA 

and these two relations imply that/2,([r/k]) = 0 for all k e A. With the help 
of Lemma 2.2, we have erlj(/2,) < oo. 

By Lemma'2.4 the identity (3.4) can be rewritten in the form 

hA~2, v)-hAm, v ) =  ~A/2s) d s + o ( I A I )  (3.5) 

Here, it is easy to observe from Lemma 2.1 that the left-hand side is 
dominated by C~ JAI. We now take A = A ,  ( n =  1, 2,...), where 

A , =  {(kt ..... ka) eZa; 1 ~<k;~<2", i =  1 ..... d} 
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Using Lemma 2.5 and the shift invariance of #, one can see without dif- 
ficulty that IA,,1-1 ~A,,(/t) is nondecreasing in n. So letting A = A ,  in (3.5) 
and then dividing both sides of (3.5) by IA.I. we see from Lemma 2.5 and 
the monotone convergence theorem that 

fo a(#s)  ds ~< C 1 < ~ ,  t > 0 (3.6) 

We conclude that a(#,) < Go for a.a. t > 0. This together with the observa- 
tion given before this proof implies that it, is F-quasi-invariant for a.a. 
t > 0, namely the assertion (i) of Corollary 3. 

The second assertion is similary proved by only noting 

' 1 ' 

which is an immediate consequence of Corollary 2. II 

We finally explain how the entropy production per site describe the 
'distance' between a given measure and equilibrium. Take a # E Jgo(E). As 
was shown after the proof of Lemma 3.1, a ( # ) =  ~ whenever # is not 
F-quasi-invariant. Next consider the case when # is F-quasi-invariant. Put 

d/l c 

Uo = log d(lt ~ ,~ Yo  I ) 

Then by Theorem 1 we have a ( # ) =  E~'[cUo],  and by using (1.5) one can 
verify 

d ( ' u ~ 1 7 6  P~176  -v~  (3.7) 
d# 0 1 ) -  pO(~7---- ~ 

Comparing (3.7) with (3.1), we can regard the term Uo as something like 
a perturbation from the equilibrium, and a(ll)  is thought of as a measure 
of this part. 

R e m a r k .  Recently, Dai Pra 42~ studied a functional I( .)  on -//o(E) 
which is obtained as the rate function of the 'space-time' large deviations 
for a (nonreversible) spin-flip process. It was shown there that the func- 
tional vanishes exactly on the set of stationary measures of the process. It 
would be of interest to find an identification of I(. ) to express the difference 
between I( .)  and a( . )  in an explicit way. A very formal argument 
using the results in ref. 2 yields a conjecture that I(iL) is equal, up to 
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some multiplicative constant, to the right side of (1.13) with h replaced 
by the square of the so-called Hellinger distance. But so far we have not 
succeeded in proving the conjecture. 
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